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Intro
Rabi Mohapatra presented theoretical motivations for 
neutron-antineutron oscillations.
           analog of the search for Majorana neutrino,            .              
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1 Introduction

Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
g2Nc is kept fixed. In this limit the meson decay widths tend to zero, so that
individual highly excited mesons become well-defined.1

1 Baryons, if treated in the standard ’t Hooft procedure, defy this rule; their decay widths,
generally speaking, do not vanish in the limit Nc → ∞, also their masses grow as Nc. However,
theNc → ∞ limit exists for the mass differences, and experiments show that rather high excitations
of nucleons and other baryons can be identified using the existing data.
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Experimental limits on stability of nuclei set the range of 
interest for the free neutron oscillation time       .                                         
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Theory, Friedman, Gal (2008), relates it to       ,                                     
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Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
g2Nc is kept fixed. In this limit the meson decay widths tend to zero, so that
individual highly excited mesons become well-defined.1

1 Baryons, if treated in the standard ’t Hooft procedure, defy this rule; their decay widths,
generally speaking, do not vanish in the limit Nc → ∞, also their masses grow as Nc. However,
theNc → ∞ limit exists for the mass differences, and experiments show that rather high excitations
of nucleons and other baryons can be identified using the existing data.

3

〈A|q̄q|A〉 ∼ A 〈n|q̄q|n〉
16O

∆ = 0.5 GeV

R = 5 × 1022 s−1

∆L = 2

τ (16O) > 1.97 × 1032 yr

τnn̄ > 3.53 × 108 s

1 Introduction
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Number of extra mechanisms was proposed, in particular,

How much it affects the relation between       and     ?
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 To answer  we try some independent approach based                 
on Operator Product Expansion.
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1 Introduction

Since the inception of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ⇢ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
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could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

Figure 1: The plot shows M2 of various meson resonances which are believed to be built
of q̄q where q = u or d. The resonances at levels 2, 3 and some resonances at 4 level GeV2

are taken from the Particle Data Group (PDG) compilation. Most of those at level 4 and all
resonances at level 5 GeV2 are taken from the compilation of resonances in pp̄ annihilation
prepared by Glozman [2], see also [3]. In selecting the q̄q resonances we followed Kaidalov’s
work [4] in discarding presumed four-quark states, gluonia or resonances built of s̄s.
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determine the daughter Regge trajectories. The Regge theory gave rise to dual
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Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while

2

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

εijk

εαβ

εα̇β̇

∆I = 1, 2, 3

n ↔ n̄

1 Introduction
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to        while the nuclei lifetime is affected by parity 
consvering processes.

Moreover, there are processes in nuclei involving
the virtual           transition which contribute to the 
nuclear instability.
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Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while

2

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

εijk

εαβ

εα̇β̇

∆I = 1, 2, 3

n ↔ n̄

∆I = 2, 3

τnn̄

1 Introduction
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Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the

2

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

εijk

εαβ

εα̇β̇

∆I = 1, 2, 3

n ↔ n̄

∆I = 2, 3

τnn̄

p

n

n̄

π+

1 Introduction
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Estimate 
Let us try to use some kind of duality to find a relation

between the free           oscillation and nuclear stability.

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

εijk

εαβ

εα̇β̇

∆I = 1, 2, 3

n ↔ n̄

∆I = 2, 3

τnn̄

p

n

n̄

π+

1 Introduction
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The average over a nucleus     gives its lifetime                
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n̄γ5un |ε| =
!

τnn̄

A
∫

d4x eiqxT{O(x)O†(0)} = cq q̄q + . . .

2|cO|2Im
∫

d4x〈A|T{O(x)O†(0)}|A〉 =
!

τA
τA

|cO|2
∫

d4x eiqx〈n|T{O(x)O†(0)}|n〉 ∼
|ε|2

∆

q ∼ ∆

〈A|q̄q|A〉 ∼ A 〈n|q̄q|n〉

2

6
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1 Introduction

Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
g2Nc is kept fixed. In this limit the meson decay widths tend to zero, so that
individual highly excited mesons become well-defined.1

The string–gauge duality-based ideas predict a certain pattern for excited reso-
nances. On the other hand, significant amount of data regarding excited mesonic

1 Baryons, if treated in the standard ’t Hooft procedure, defy this rule; their decay widths,
generally speaking, do not vanish in the limit Nc → ∞, also their masses grow as Nc. However,
theNc → ∞ limit exists for the mass differences, and experiments show that rather high excitations
of nucleons and other baryons can be identified using the existing data.
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what is close to the result obtained by Friedman, Gal 
(2008).                  
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 The inclusive approach does include all the mechisms.                  
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Conclusion 

While, probably, more theoretical studies are needed
there is no much room for changing the relation 
between nuclear disappearance lifetimes and free
neutron-antineutron oscillations.

What is the theoretical accuracy? Needs more work.
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